Friday, August 07, 2009

Ruse, Michael. "Gaia in the Light of Modern Science." CHRONICLE July 20, 2009.

Lovelock, James. Gaia: A New Look at Life on Earth. Oxford: OUP, 1979. Jim Lovelock (as they call him) is someone with a deservedly high reputation as a scientist. Although trained as a chemist, for many years (thanks primarily to the demands of the Second World War and its aftermath) he worked on biological and medical questions, investigating such matters as the spread of the common cold, a problem which involves the physics and chemistry of small particles as much as anything strictly organic in itself. By the early 1970s, that research had earned him a Fellowship in the Royal Society of London. Around that time, however, Lovelock broke from conventional science, having become convinced that the earth is a living organism. To this hypothesis, drawing on a suggestion by his neighbor—the late Nobel Prize-winning novelist William Golding—Lovelock gave the name Gaia, referring to the Greek goddess of the earth. . . . Lovelock is out of tune with modern science. Picking up the story at the end of the Middle Ages, in the time span from Copernicus, at the beginning of the 16th century, to Newton, at the end of the 17th century, something major happened in what was then known as natural philosophy. The idea (the metaphor, if you like) of the world as an organism was increasingly rejected in favor of the idea or metaphor of the world as a machine. To cite the title of one of the greatest histories written about the period, by the Dutch historian E.J. Dijksterhuis in 1950, minds turned to The Mechanization of the World Picture. Why did the new perspective triumph? Why did people want to drop all of that organiclike, end-directed thinking and focus instead on blind law, working with undeviating regularity? There is no great mystery here. It was not some violent repudiation of God. Copernicus was a minor cleric who died in good standing, and Newton, for all that he may privately have doubted the divinity of Christ, was an ardent—one might say obsessive—believer in a deity. The machine metaphor triumphed because it led to a science that more readily exhibited the values that scientists hold dear—Newtonian physics was more predictively fertile, more consistent, more unifying, more everything than Aristotelian physics. With the new physics you could explain and do things simply impossible with the old. A weapon maker could calculate the trajectory of a cannonball; a lens maker could work out the best kind of optical apparatus; a chemist could start to understand why certain combinations of elements work and others do not, saving valuable time and materials when making alloys. The machine metaphor may have been regarded by the Aristotelians as akin to an Egyptian plague—there are those today who think likewise, especially the so-called "ecofeminists" who argue that we abuse and rape our dwelling place—but the current of thought did not sweep through overnight. At the end of the 18th century, Immanuel Kant notoriously declared that there would never be a Newton of a blade of grass, meaning that a machine-based picture could never fully capture the organic world. But in the 19th century, Darwin, thanks to his mechanism of natural selection, showed how organisms are subject to unbroken, unbending laws. Richard Dawkins, who has a gift for these sorts of phrases, spoke of organisms as "survival machines." And then, as the 20th century drew to an end, many believed that cognitive scientists had finally extended the machine metaphor to the human brain and its thinking abilities. We were invited to think of brains as the hard drives behind our thoughts—computers made of meat, said the computer scientist Marvin L. Minsky. There have long been attempts to resuscitate the claim that the world is an organism. The most ardent were those by the German Romantics at the beginning of the 19th century—known as the Nature Philosophers, or Naturphilosophen—who included the poet Johann Wolfgang von Goethe, the anatomist Lorenz Oken, and the greatest advocate of all, the philosopher F.W.J. von Schelling. But generally, although those people often did good science, however you judge it, such attempts came to naught. The organic metaphor did not work as well as the machine metaphor. Indeed, the enthusiasm of the Naturphilosophen, and more particularly of their modern-day successors, does show why it was as well that, before Lovelock took up the organic metaphor, his fellowship at the Royal Society was already in hand. . . . Read the rest here:

No comments:

Post a Comment